Copied to
clipboard

G = C3×C23.C8order 192 = 26·3

Direct product of C3 and C23.C8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23.C8, C23.C24, C24.104D4, M5(2)⋊3C6, C12.34M4(2), (C2×C4).C24, (C2×C8).3C12, (C2×C24).6C4, (C2×C12).2C8, C8.24(C3×D4), (C22×C6).1C8, C22.4(C2×C24), (C22×C4).5C12, (C22×C12).9C4, C4.7(C3×M4(2)), C6.26(C22⋊C8), (C3×M5(2))⋊11C2, (C2×C24).309C22, (C6×M4(2)).22C2, (C2×M4(2)).10C6, C12.112(C22⋊C4), (C2×C6).22(C2×C8), (C2×C8).46(C2×C6), C2.7(C3×C22⋊C8), (C2×C4).67(C2×C12), C4.29(C3×C22⋊C4), (C2×C12).328(C2×C4), SmallGroup(192,155)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C23.C8
C1C2C4C8C2×C8C2×C24C3×M5(2) — C3×C23.C8
C1C2C22 — C3×C23.C8
C1C12C2×C24 — C3×C23.C8

Generators and relations for C3×C23.C8
 G = < a,b,c,d,e | a3=b2=c2=d2=1, e8=d, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >

Subgroups: 90 in 58 conjugacy classes, 34 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C16, C2×C8, M4(2), C22×C4, C24, C24, C2×C12, C2×C12, C22×C6, M5(2), C2×M4(2), C48, C2×C24, C3×M4(2), C22×C12, C23.C8, C3×M5(2), C6×M4(2), C3×C23.C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C8, M4(2), C24, C2×C12, C3×D4, C22⋊C8, C3×C22⋊C4, C2×C24, C3×M4(2), C23.C8, C3×C22⋊C8, C3×C23.C8

Smallest permutation representation of C3×C23.C8
On 48 points
Generators in S48
(1 28 45)(2 29 46)(3 30 47)(4 31 48)(5 32 33)(6 17 34)(7 18 35)(8 19 36)(9 20 37)(10 21 38)(11 22 39)(12 23 40)(13 24 41)(14 25 42)(15 26 43)(16 27 44)
(2 10)(3 11)(6 14)(7 15)(17 25)(18 26)(21 29)(22 30)(34 42)(35 43)(38 46)(39 47)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,33)(6,17,34)(7,18,35)(8,19,36)(9,20,37)(10,21,38)(11,22,39)(12,23,40)(13,24,41)(14,25,42)(15,26,43)(16,27,44), (2,10)(3,11)(6,14)(7,15)(17,25)(18,26)(21,29)(22,30)(34,42)(35,43)(38,46)(39,47), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,33)(6,17,34)(7,18,35)(8,19,36)(9,20,37)(10,21,38)(11,22,39)(12,23,40)(13,24,41)(14,25,42)(15,26,43)(16,27,44), (2,10)(3,11)(6,14)(7,15)(17,25)(18,26)(21,29)(22,30)(34,42)(35,43)(38,46)(39,47), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,28,45),(2,29,46),(3,30,47),(4,31,48),(5,32,33),(6,17,34),(7,18,35),(8,19,36),(9,20,37),(10,21,38),(11,22,39),(12,23,40),(13,24,41),(14,25,42),(15,26,43),(16,27,44)], [(2,10),(3,11),(6,14),(7,15),(17,25),(18,26),(21,29),(22,30),(34,42),(35,43),(38,46),(39,47)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

66 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F8A8B8C8D8E8F12A12B12C12D12E12F12G12H16A···16H24A···24H24I24J24K24L48A···48P
order1222334444666666888888121212121212121216···1624···242424242448···48
size1124111124112244222244111122444···42···244444···4

66 irreducible representations

dim11111111111111222244
type++++
imageC1C2C2C3C4C4C6C6C8C8C12C12C24C24D4M4(2)C3×D4C3×M4(2)C23.C8C3×C23.C8
kernelC3×C23.C8C3×M5(2)C6×M4(2)C23.C8C2×C24C22×C12M5(2)C2×M4(2)C2×C12C22×C6C2×C8C22×C4C2×C4C23C24C12C8C4C3C1
# reps12122242444488224424

Matrix representation of C3×C23.C8 in GL4(𝔽97) generated by

61000
06100
00610
00061
,
1007
09670
0010
00096
,
10907
019090
00960
00096
,
96000
09600
00960
00096
,
57906730
40903067
09577
5305740
G:=sub<GL(4,GF(97))| [61,0,0,0,0,61,0,0,0,0,61,0,0,0,0,61],[1,0,0,0,0,96,0,0,0,7,1,0,7,0,0,96],[1,0,0,0,0,1,0,0,90,90,96,0,7,90,0,96],[96,0,0,0,0,96,0,0,0,0,96,0,0,0,0,96],[57,40,0,53,90,90,95,0,67,30,7,57,30,67,7,40] >;

C3×C23.C8 in GAP, Magma, Sage, TeX

C_3\times C_2^3.C_8
% in TeX

G:=Group("C3xC2^3.C8");
// GroupNames label

G:=SmallGroup(192,155);
// by ID

G=gap.SmallGroup(192,155);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,3027,2111,102,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=1,e^8=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽